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Abstract— In the dopaminergic network system of prefrontal
cortex (PFC)–ventral tegmental area (VTA), physiological ex-
periments have been reported that the D2 neurons inhibit the
spontaneous activity of PFC neurons. However, the functional
role of D2 suppression is not understood well. Is the effect
of modulatory D2 inhibition different from that of GABAergic
inhibition? The aim of this research is to reveal the difference
between modulatory suppression of D2 and global inhibition by
interneurons. To compare the effects, we construct two alternative
models: (1) all GABAergic interneurons of PFC are modulated
by a D2 system, or (2) a global interneuron depolarizes all of PFC
pyramidal cells. In computer simulations, we exemplify each of
the models using a spiking neural network model with sparse and
random synaptic connections. The simulation result shows that
model-(1) keeps high correlation between spatial patterns of mean
firing rates and the network structure despite the suppression
of activity, while model-(2) reduces the correlation. This result
suggests that modulatory suppression of D2 is more than a global
suppression and may play a role in memory retrieval function.

I. INTRODUCTION

A lot of experimental data have been shown that ascend-
ing projections of midbrain dopamine neurons to prefrontal
cortex (PFC) play important roles in working memory and
reinforcement learning ([6], [8], [10], for example). These
functions are concerned with the dopaminergic mesocortical
system, which originates in the ventral tegmental area (VTA)
and projects to the neocortex, in particular the prefrontal cor-
tex. It has been shown that electrical and chemical stimulation
of the PFC induces burst firing in the VTA dopaminergic
neurons [12]. Burst firing of VTA leads to increased DA
release at dopaminergic terminals in the forebrain [3].

Generally, DA system is categorized into two groups de-
pending on the receptors: D1 and D2 system. The D1 system in
the PFC-VTA networks has been well studied experimentally
and from computational models, and it is thought to have in-
timate relations to the functions such as working memory [4],
[5], [6], [8], [10], [11]. On the other hand, the function of D2

system is not well understood. Electrical stimulation of the
VTA leads to a marked inhibition of the spontaneous activity
of PFC cells, and this inhibition is mainly due to the activation
of the D2 system rather than to the D1 [7]. Inhibition of
prefrontal cortex might also be due to an indirect action of
D2 on the cortical GABAergic interneurons through increase
in release of GABA [9].

As a first step to elucidate the function of D2 system,
we focus on the inhibition of PFC cells through modulatory
effects of D2. Our question is, “Is the effect of modulatory

D2 inhibition different from that of GABAergic inhibition?"
The aim of this research is to reveal the difference be-
tween modulatory suppression of D2 and global inhibition
by interneurons. To compare the effects, we construct two
alternative models: (1) all GABAergic interneurons of PFC
are modulated by a D2 system, we call “PFC-DA model” or
(2) a global interneuron depolarizes all of PFC pyramidal cells,
we call “PFC-GL model”. In the next sections, we explain the
details of PFC-DA model and PFC-GL model, respectively.
In computer simulations, we exemplify each of the models
using a spiking neural network model with sparse and random
synaptic connections. The simulation result shows that model-
(1) keeps high correlation between spatial patterns of mean
firing rates and the network structure despite the suppression
of activity, while model-(2) reduces the correlation. The high
correlation indicates that internal information stored in the
synaptic weights is represented by firing rates. This result
suggests that modulatory suppression of D2 is more than a
global suppression and may play a role in memory retrieval
function.

II. PFC-DA MODEL

The PFC-DA model consists of PFC neurons and a DA
neuron. Fig.1 shows the schematic structure of the PFC-DA
model. We constructed PFC network of spiking neural network
model with sparse and random synaptic connections [2]. This
model is based on the chaotic neural network model, but the
output function is the Heaviside function. As such, it is an
application and extension of the Nagumo-Sato neuron model.
Each neuron receives input spikes from presynaptic neurons
and sends spikes to all of its postsynaptic neurons when it fires.
After it fires, the neuron becomes more refractory to further
firing for a time. Assuming that xi represents internal activity
of each neuron and yi represents an output value, the dynamics
of this model are represented by the following equations:

xi(t + 1) =
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0-7803-7898-9/03/$17.00 ©2003 IEEE 2563



yi(t) =

{

1 if xi(t) > 0
0 otherwise

(2)

where N is the total number of the cells, τ is the decay time
constant of the membrane potential, sj is the discrimination
parameter as to whether j cell is excitatory or inhibitory (sj

= 1.0 or -3.0, respectively), wij is the synaptic weight from j

cell to i cell, ∆ij is the delay time of spike transmission from
j cell to i cell, Ai(t) is the external input to i cell, α is the
scaling parameter of the refractory effect, τref is the decay time
constant of the refractory effect, and θ is the resting threshold
for firing. For simplicity, time is assume to be discrete. Each
cell has an alternative excitatory or inhibitory property, which
determines the value of sj . In the simulations, about 80% of all
cells are excitatory, and the rest (20%) are inhibitory. The rate
of connections is about 20% in this model, that is, each neuron
receives synaptic inputs from about 20% of all neurons except
itself(wii = 0). Transmission delays are randomly selected
from limited, discrete values, form 1 to 4 here. The synaptic
weights are generally asymmetrical, that is, wij 6= wji, and of
random values in a uniformly distributed range in [0.8,1). We
used Poisson process inputs as external inputs. If interspike
intervals of the input spikes follow exponential distribution
of the probability density in continuous time, such temporal
spikes follow the Poisson process. The term Poisson process
inputs indicates a temporal series of input signals in which
the continuous-time interspike intervals of Poisson process
are approximated to the smallest integers not less than the
corresponding values. For simplicity, the dopamine neuron
in the VTA is assumed to be a simple integrated-and-fire
neuron. The dopamine neuron receives spikes from all of PFC
pyramidal cells. Thus, the activity of the dopamine neuron
reflects populational activity of PFC pyramidal cells. The
equation of a DA model is given as follows:

xDA(t + 1) =

NE−1
∑

jE=0

t
∑

r=0

exp(−
r

τDA

)yjE(t − r) (3)

where xDA is the internal activity of DA neuron, NE is
the number of the pyramidal neurons in the PFC, and τDA

DA

pyramidal cell

interneuron

Fig. 1. Schematic structure of PFC-DA model

is the decay time constant of the membrane potential. For
the inhibition of spontaneous activity of PFC cells, GABA
interneurons in the PFC enhance the suppressive effect (see
Fig.2). Internal activity of DA modulates all of GABAergic
inhibition by the following equation:

sj(t + 1) =

{

sj(t) − βxDA(t − ∆DA) if xDA(t) > 0
sj(t) otherwise

(4)

where β is a scaling parameter whose value is 0.01 in
the computer simulations. ∆DA is the delay time of spike
transmission from PFC cell to PFC cell via DA neuron. This
sj rule (Eq.(4)) is applied to every interneuron equally. Fig.2
shows that higher activity of PFC neurons activate the DA
neuron and receive suppressive effects within tens of unit time.
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Fig. 2. Raster plots of PFC and internal state of DA model

III. PFC-GL MODEL

The PFC-GL model consists of PFC neurons and a global
interneuron (GL) models. PFC model is the same as the PFC
network of PFC-DA model. Basically, the behavior of GL
model is same as DA model (Eq.(6)).

pyramidal cell

interneuron

GLOBAL

Fig. 3. Schematic structure of PFC-GL model
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xGL(t + 1) =

NE−1
∑
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t
∑

r=0

exp(−
r

τGL

)yjE(t − r) (6)

GL model directly depolarizes all of PFC pyramidal cells.
Internal state of PFC pyramidal cells is reduced by internal
state of GL model. We observe that GL model changes the
internal state similarly as DA model does (see Fig.4 and Fig.2).
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Fig. 4. Raster plots of PFC and internal state of GL model

IV. COMPUTER SIMULATIONS

A. Suppressive effect

Fig.5 shows that the suppressive effect by PFC-DA model
and PFC-GL model, respectively. In both models, synaptic
connection and external input are the same patterns. PFC-DA
model and PFC-GL model are more suppressive than PFC
model (see Fig.5).
Fig.6 shows spatiotemporal firing patterns and spatial patterns
of mean firing rates (SPMFR). Mean firing rate of each neuron
in a time window is defined as follows:

Mi =

T
∑

t=0

yi(t)

T
(7)

SPMFR can be represented using this term Mi as follows:
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Fig. 5. Comparison of suppressive effect
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Fig. 6. An example of spatiotemporal firing patterns and spatial patterns of
mean firing rates.

M = (M1, M2, ..., MN) (8)

SPMFR vary with the network and external input pattern. To
measure global firing rate over neurons, we defined SPMFR
and the average of SPMFR as follows:

Ave. of SPMFR =

∑

i Mi

N
(9)

Fig.7 shows that average of SPMFR by DA neuron and
GL neuron. The error bars indicate standard deviation (SD)
(n=100). X-axis indicates average of interspike intervals of
the external input. PFC-DA model and PFC-GL model are
more suppressive than PFC model (see Fig.5). In addition, the
suppressive effect by GL is stronger than that by DA.

B. Correlation coefficient between SPMFR and the W pattern

In the previous study, we showed that the correlation coeffi-
cients between SPMFR and the W pattern in this PFC model
are close to one in case of relatively higher input frequency.
The W pattern is defined as follows:

W = (W1, W2, ..., WN ) (10)

Wi =
∑

j

sjwij (11)

W is the spatial patterns of the sum of synaptic weights, in
which sj and wij are the same variables as in equation (2).
The similarity between SPMFR and W means that SPMFR
of spikes represent the network structure W . This property
of SPMFR reflect can be interpreted as the recall function of
internal memory [2].

In order to clarify the difference of suppressive effect,
we compared the correlation coefficients between SPMFR
and W for PFC-DA and PFC-GL models. Fig.8 shows that
correlation coefficient between SPMFR and W of PFC model
and PFC-DA model, respectively. Fig.9 shows that correlation
coefficient between SPMFR and W of PFC model and PFC-
GL model, respectively. The horizontal-axis indicates average
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Fig. 7. Average of SPMFR

of SPMFR, and we calculated correlation coefficients 100
times per one average of ISI. (ave. of ISI = 10,15,20,. . . ,100).
The correlation coefficients of PFC-DA and PFC models are
almost correspondent (See Fig.8). However, the correlation
coefficient of PFC-GL model is lower than PFC model (See
Fig.9). This is a remarkable difference between DA and GL
inhibitory effects, which we have found. This implies that
the DA inhibitory effect suppresses spikes but keeps SPMFR
reflecting internal information, while GL inhibition suppresses
both of them. Plots of PFC-GL are shifted to the left because
of stronger inhibitory effect of GL (See Fig.9).

V. SYNAPTIC WEIGHTS WITH ATTRACTORS

In section IV, we used the synaptic weights of random
values in a uniformly distributed range in [0.8). In this section,
we examined the difference between DA and GL under the
condition that the network dynamics have multiple attractors.
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Fig. 8. Correlation between SPMFR and W for PFC and PFC-DA models
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Fig. 9. Correlation between SPMFR and W for PFC and PFC-GL models

We assumed the synaptic weights are given as follows [1]:

wij =
1

m

m
∑

p=1

(2x
p
i − 1)(2x

p
j − 1) (12)

where x
p
i is the ith component of the pth stored pattern. And

we use four stored patterns (m = 4) in this simulation. Fig.10
shows raster plots of PFC-DA model with the synaptic weights
defined by Eq.(12), and Fig.11 shows those of PFC-GL model
with the same synaptic weights. Since the network dynamics
have multiple attractors, SPMFR are itinerant among the stored
m patterns in the same way as in the studies so far (for exam-
ple, [1]). There is a possibility that the itinerancy is chaotic
because each neuron model has chaotic properties [2], which
we will not examine any more in this study. Since SPMFR are
not so stable as those with random synaptic weights, we cannot
compare the suppressive effects between PFC-DA and PFC-
GL models by calculating correlation coefficients of SPMFR
and W as in section IV (Fig.8,9). Thus, we should devise this
method for variable SPMFR, or think out another way. This
is one of our future works.

VI. DISCUSSION

As average of ISI of external input increases, suppressive
effect of both models hardly change, and the average of

SPMFR seems to converge. The simulation result shows that
PFC-DA model keeps high correlation between spatial patterns
of mean firing rates and the network structure despite the
suppression of activity, while PFC-GL reduces the correlation.
The result suggests that inhibitory effect by dopaminegic
modulation may play a role in suppressing noisy signals
and memory recall function. In PFC-GL model, the result of
correlation coefficient indicates that global suppression may
suppress both of recalled memory and other information.

VII. CONCLUSION

In this research, we constructed two alternative models and
revealed the difference between modulatory suppression of D2

and global inhibition by interneurons. In PFC-DA model, we
observe that the activity of PFC pyramidal cells is suppressed
and the correlation coefficient between SPMFR and W hardly
decreases. The result suggests that dopaminergic modulation
may play a role in inhibiting PFC pyramidal cells activity by
less spikes for representing internal information.
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Fig. 10. Raster plots of PFC-DA model with attractive synaptic weights
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(b) from t = 100 to t = 200
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(c) from t = 200 to t = 300
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Fig. 11. Raster plots of PFC-GL model with attractive synaptic weights
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