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Among the most well-known learning rules to achieve synaptic plasticity is the Hebbian learning rule[1], which
modifies synaptic weight according to both activity of presynaptic neurons and that of postsynaptic neurons. However,
Tsukada et al. identified long-term potentiation induced only by activity of presynaptic neurons[2]. The spatiotemporal
learning rule (STLR), which causes this phenomenon, differs from the Hebbian learning rule in that activity of
postsynaptic neurons has nothing to do with long-term potentiation. Then, STLR has proven to excel at pattern
discrimination, or distinguishing similar input patterns, compared with the Hebbian learning rule[3, 4]. However,
STLR has yet to be analyzed in detail.

In this paper, we simulated pattern discrimination by the Hebbian learning rule, the Hebbian± learning rule, and
STLR[3]. The neural network of interest comprises N formal neurons. Its connectivity is single-layered and feed-
forward. The firing of the i-th postsynaptic neuron at discrete time tn, which is expressed as yi(tn), is determined by
the following equation[4]:

yi(tn) =

{
1 si(tn) ≥ η

0 si(tn) < η,
(1)

where η is the threshold of firing and si(tn) is the membrane potential, which is expressed as follows:

si(tn) =

N∑
j=1

wij(tn)xj(tn), (2)

where xj(tn) is the firing of the j-th presynaptic neuron and wij(tn) is the synaptic weight connecting the i-th
postsynaptic neuron and the j-th presynaptic neuron. xj(tn) and yi(tn) take either “1” (action potential) or “0”
(resting potential).

STLR modifies synaptic weight by the following equation:

wij(tn+1) =


wij(tn) + ∆w, Jij(tn) ≥ θ1

wij(tn), θ2 < Jij(tn) < θ1

wij(tn)−∆w, Jij(tn) ≤ θ2,

(3)

where ∆w is the learning rate, and θ1 and θ2 are threshold of long-term potentiation and long-term depression,
respectively. The temporal history of spatial coincidence, Jij(tn), is defined as Eq.(4):

Jij(tn) =

n∑
m=0

Iij(tm) exp

(
− tn − tm

λ

)
, (4)

where λ is the time constant and Iij(tn) is the spatial coincidence expressed as follows:

Iij(tn) = wij(tn)xj(tn)

N∑
k=1,k ̸=j

wik(tn)xk(tn). (5)

In the learning process, five input patterns are applied to the neural network at discrete time (t1, . . . , t5). After
learning completes, one of the five input patterns is given and an output pattern is obtained. We repeated the above-
mentioned procedure for all the permutation of input patterns (5! = 120) and evaluated the pattern discrimination
ability. As a result, the Hebbian learning rule and the Hebbian± learning rule failed to distinguish the order of the
given patterns. On the contrary, STLR showed that appropriate parameters achieve outstanding pattern discrimination
ability.
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