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Abstract

Electrophysiological experiments have clarified the proper-
ties of a single neuron, and mathematical neuron models that
reproduce neuronal dynamics have been proposed. One of
such models is the Izhikevich neuron model, which can re-
produce various spike patterns with a remarkable computa-
tional efficiency. In this study, we computationally stimulated
the Izhikevich neuron model with sinusoidal forcing. Evalua-
tion of responses focusing on interspike intervals (ISIs) iden-
tified both periodic and irregular responses. The results also
showed that the coefficient of variation of periodic responses
was higher than that of irregular responses and that both ac-
tivities were subject to modulation.

1. Introduction

Among the most important goals in the field of neuro-
science is to clarify the mechanism of information process-
ing by the brain. A way of reaching the goal is investigation
of nonlinear dynamics of a single neuron, the fundamental
component of the brain. Physiological experiments and math-
ematical modeling have worked together. Hayashi et al. [1]
stimulated Onchidium’s giant neurons with sinusoidal current
and identified chaotic responses. Aihara et al. [2] stimulated
Doryteuthis bleekeri’s giant axons with sinusoidal input and
identified periodic, quasi-periodic, and chaotic responses.

Computational neuroscience holds numerical experiments
and analyses of mathematical neuron models. For example,
Hodgkin and Huxley examined the electrophysiological prop-
erties of a neuron and formulated them as ordinary differen-
tial equations, later called the Hodgkin–Huxley model, for
the first time [3]. Aihara et al. [4] observed that a periodi-
cally forced Hodgkin–Huxley model induced periodic, quasi-
periodic, and chaotic responses. Although the Hodgkin–
Huxley model has electrophysiologically meaningful param-
eters and can reproduce various spike patterns, it is compu-
tationally intensive on account of high dimensionality and
unsuitable for large-scale simulations. Consequently, sim-
pler neuron models have been proposed, among which is the
Izhikevich neuron model [5]. The Izhikevich neuron model
can reproduce as many kinds of neuronal activities as the

Hodgkin–Huxley model does when it is much less compu-
tationally intensive.

Farokhniaee and Large [6] stimulated the Izhikevich neu-
ron model with sinusoidal forcing and investigated mode–
locking behavior. Nobukawa et al. [7, 8] examined responses
of the Izhikevich neuron model to weak sinusoidal inputs. We
have already studied the activities of regular spiking [9, 10],
fast spiking [11], intrinsically bursting [12], and chattering
[12] neurons of the Izhikevich neuron model and compared
the four neuron types from the viewpoint of ISIs [13, 14].
However, much remains to be studied on other types of neu-
rons.

In the present study, we evaluated responses of a low-
threshold spiking (LTS) neuron of a periodically forced
Izhikevich neuron model with three measures quantifying
ISIs: the diversity index [15, 16], the coefficient of variation,
and the local variation [17, 18].

2. The Izhikevich Neuron Model

The Izhikevich neuron model is a reduced variant of the
Hodgkin–Huxley model and defined as follows:





dv

dt
= 0.04v2 + 5v + 140− u+ I(t)

du

dt
= a(bv − u)

(1)

with the reset process after firing described as follows:

when v ≥ 30 [mV], then

{
v ← c

u← u+ d,
(2)

where v is the membrane potential and u is the recovery vari-
able that gives negative feedback to v which represents the
activation of K+ ionic currents and inactivation of Na+ ionic
currents; t is time in milliseconds; a, b, c, and, d are di-
mensionless parameters to determine neuron types; I(t) is
time-dependent external forcing. The parameter set for an
LTS neuron, the object of this study, is shown in Table 1.
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Table 1: The parameters a, b, c, and d, and input current I(t)
of an LTS neuron.

a b c d I(t)
0.02 0.25 −65 2 10

Here, the external forcing I(t) is composed of direct cur-
rent IDC and alternating current IAC = A sin 2π

T t, defined as
follows:

I(t) = IDC + IAC = IDC +A sin
2π

T
t, (3)

where T and A represent the period and the amplitude of the
sinusoidal forcing, respectively. We examined the effect of
the period T and the amplitude A of the sinusoidal input on
responses.

In this study, we adopted the Euler method with the interval
of h = 0.01 to numerically calculate the Izhikevich neuron
model. To estimate firing time tF more accurately, we applied
the linear interpolation by the following equation:

tF = t+
30− v(t)

v(t+ h)− v(t)
h, (4)

where t satisfies v(t) < 30 and v(t+ h) ≥ 30. Although the
Runge–Kutta method can solve differential equations more
accurately, the Euler method with linear interpolation can es-
timate sufficiently accurate firing times with fewer computa-
tions [19]. In the following numerical experiments, we omit-
ted spike sequences in 0 < t ≤ 5, 000 and used those in
5, 000 < t ≤ 15, 000 in order that we eliminated transient
states.

3. ISI Measures

Three measures are used for analyses on responses: the
diversity index D [15, 16], the coefficient of variation Cv ,
and the local variation Lv [17, 18].

3.1 Diversity Index

The diversity index D is defined as follows [15, 16]:

D =
M

N
, (5)

where M is the number of different values of ISIs and N
is the total number of ISIs. Assume that N is sufficiently
large. In this study, if two ISIs are equal up to six decimal
places, we define them to be the same. In the case of periodic
activities, M is a limited number and significantly smaller
than N , which leads to D close to zero. On the contrary,
chaotic activities result in D close to unity because neuron
fires at irregular intervals and M is close to N . Thus, D can
evaluate regularity/irregularity of neuronal activities.

3.2 Coefficient of Variation

The unbiased variance σ2 of ISIs is given by

σ2 =
1

N − 1

N∑

i=1

(si − s̄)2, (6)

where si is the i-th ISI and s̄ = 1
N

∑N
i=1 si is the average ISI.

The coefficient of variation Cv is defined as the ratio of the
standard deviation σ to the mean s̄ of ISIs:

Cv =
σ

s̄
. (7)

If all the ISIs are the same, Cv = 0. On the other hand, Cv →
1 for a spike sequence following a Poisson distribution. A
higher Cv represents a more irregular activity.

3.3 Local Variation

The local variation Lv is defined as follows [17, 18]:

Lv =
1

N − 1

N−1∑

i=1

3(si − si+1)
2

(si + si+1)2
. (8)

The three in the summands is taken so that Lv → 1 when ISIs
are Poison sequence. If all the ISIs are the same, Lv = 0.

The diversity index D reflects only distribution of ISIs and
insensitive to the actual differences between ISIs, to which
Cv and Lv are subject. The coefficient of variation Cv is
highly sensitive to fluctuation of firing rate, reflects only dis-
tribution of ISIs, and represents the global variability of spike
sequences. On the other hand, the local variation Lv is sub-
ject to temporal order of ISIs and represents the intrinsic spik-
ing characteristics independently of fluctuation of firing rate.
When a neuron is globally modulated and its spike sequence
seems to be locally periodic in appearance, Cv takes a large
values while Lv takes a lower value. Thus, Lv can elimi-
nate the effect of firing rate modulation and evaluate intrinsic
characteristics.

4. Results

Figure 1 shows the period–amplitude planes of the mea-
sures, where the horizontal and the vertical axes represent
the period and the amplitude of sinusoidal forcing, respec-
tively, and the color bar represents values of the measures.
The diversity index D indicates that there exist two domains:
periodic responses (a black or purple region) and irregu-
lar responses (a yellow region) (See Fig. 1(a)). As A in-
creases from zero to 10, the diversity index of ISIs noticeably
changes. This implies that the phase transition from irregular
response to periodic response occurs as A increases.

Figure 1(b) shows that smaller values of D correspond to
larger values of Cv and that larger values of D correspond
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to smaller values of Cv . Thus, periodic spike sequence com-
prises a pattern of highly uneven ISIs. In an irregular spike
sequence, ISIs differ slightly.

In Fig. 1(c), the values of Lv corresponding to periodic
responses and corresponding to irregular responses are ap-
proximately zero in most parts although the former is slightly
larger than the latter. Thus, both periodic and irregular re-
sponses are modulated by sinusoidal forcing. An exception
is the region around T = 30, where the values of Lv are ap-
proximately equal to or larger than unity. This implies that
activities are free from modulation in the region.

(a) The diversity index D

(b) The coefficient of variation Cv

(c) The local variation Lv

Figure 1: Measures of ISIs from of a periodically forced
Izhikevich neuron model with parameters of an LTS neuron.

5. Conclusions

With the diversity index, the coefficient of variation, and
the local variation, all of which quantify ISIs, we evaluated
spike sequences of an LTS neuron of the Izhikevich neuron
model in response to sinusoidal forcing. Evaluation of the
diversity index shows that both periodic and irregular activ-
ities are induced depending on the period and the amplitude
of sinusoidal input. Negative correlation between the diver-
sity index and the coefficient of variation implies that periodic
responses comprise repetition of a train of spikes with highly
diverse ISIs and that irregular responses are much less diverse
while same intervals are rarely repeated. For both periodic
and irregular activities, the local variation takes low values,
which indicates that modulation by sinusoidal forcing have
an effect on activities regardless of periodicity or irregularity.
However, when the period of sinusoidal forcing is close to 30,
the local variation can be significantly high, indicating weak
modulation effect.
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